
Optimization Theory and Algorithm Lecture 5 - 05/11/2021

Lecture 5

Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Vector Space

Definition 1 Suppose a set V satisfies, for any x,y ∈ V implies a · x + b · y ∈ V , where “+” and “·” are
the addition and scalar-multiplication which are defined on V . The we call the set V as a vector space, and
any x ∈ V is a vector of V .

Example 1 The examples of Vector Space:

• R2 and Rn are vector spaces.

• D =

A ∈ R3×3 : A =

a11 0 0
0 a22 0
0 0 a33


• R2,R and {0} are the sub-spaces of R3.

• The Column Space of A = (a1, . . . ,an),ai ∈ Rm, C(A) = {b ∈ Rm : b =
∑n

i=1 xiai, xi ∈ R}. Thus,
actually b is the linear combination of the column vectors of A. The matrix form can be written as
C(A) = {b ∈ Rm : b = Ax}.

• The Null Space of A: N(A) = {x ∈ Rn : Ax = 0}.

• F = {f |f(x) = a>x + b,x,a ∈ Rn} is a vector space??

Definition 2 If
∑n

i=1 xiai = 0 implies that x1 = x2 = · · · = xn = 0, then the vectors ai, i = 1, . . . , n are
linearly independent.

Note that A = (a1, . . . ,an) and N(A) = 0 means that vectors ai, i = 1, . . . , n are linearly independent.

Definition 3 The basis of a vector space V is a set of vectors v1, . . . , vd satisfies:

• v1, . . . , vd are linearly independent.

• span{v1, . . . , vd} = {b : b =
∑d

i=1 xivd, xi ∈ R} = V .

Then we say the dimensionality of V is d, denoted as dim(V ) = d.

Example 2 The four fundamental sub-spaces of A ∈ Rm×n are the column space C(A), null space N(A),
the row space R(A) = C(A>) and the left-null space N(A>) = {x : A>x = x>A = 0}. We can see that
C(A) ⊂ Rm, N(A>) ⊂ Rm, R(A) ⊂ Rn, R(A) ⊂ Rn, and dim(C(A)) = rank(A) = r, dim(N(A>) = m − r
and dim(R(A)) = r, dim(N(A)) = n− r (see Figure 1).
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Figure 1: The four fundamental sub-spaces of A
.

2 Vector Norm

Vector Norm:

Definition 4 The norm of a vector v ∈ Rn is a function ‖ · ‖ : Rn → R satisfies:

• ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0.

• ‖αv‖ = |α|‖v‖ for any α ∈ R.

• ‖v + u‖ ≤ ‖v‖+ ‖u‖

Example 3 We demonstrate some norm examples.

• `p-norm 1 ≤ p <∞: ‖x‖p = (
∑n

i=1 |xi|p)
1/p

.

• `∞-norm: ‖x‖∞ = maxi |xi|.

• `0-norm: ‖x‖0 is the number of nonzero elements of x.

• Q: is `0-norm a vector norm??

Theorem 1

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞ (1)

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞ (2)

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 (3)

‖x‖p ≤ ‖x‖q ≤ n
1
q−

1
p ‖x‖p, p ≥ q > 1. (4)
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Proof 1 Sample Proof: Let v = (v1, . . . , vn)>, where vi = |xi|/xi if xi 6= 0. Thus, |vi| = 1 and |xi| = vixi.
Then

‖x‖1 =
∑
i

|xi| =
∑

vixi = v>x ≤ ‖v‖2‖x‖2 =
√
n‖x‖1, (5)

where the last inequality comes from the Cauchy inequality (6). The geometric interpretation can be found
in Figure 2.

Figure 2: The balls of unit norm in R2

.

Definition 5 We define the inner product of v, u ∈ Rn is 〈v, u〉 = v>u. Then the `2-norm is the norm with
respect to the inter product in Rn, that is ‖v‖22 = v>v = 〈v, v〉.

Theorem 2 (Pythagorean Theorem)

‖u+ v‖22 = ‖u‖22 + ‖v‖22,

if v ⊥ u, namely 〈u, v〉 = 0.

Theorem 3 (Cauchy Inequality)

|〈u, v〉| ≤ ‖u‖2‖v‖2. (6)
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Based on the Cauchy inequality, we can define the angle between two vectors is cos(u, v) = 〈u,v〉
‖u‖2‖v‖2 . This

can be seen as the similarity of two vectors.

Q: How to project a vector a on b?

Theorem 4 (Hölder Inequality)

|〈u, v〉| ≤ ‖u‖p‖v‖q, (7)

where p, q ≥ 1 and 1
p + 1

q = 1.

3 Matrix Norm

Matrix Norm:

Definition 6 The norm of a matrix A ∈ Rm×n is a function ‖ · ‖ : Rm×n → R satisfies:

• ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0.

• ‖αA‖ = |α|‖A‖ for any α ∈ R.

• ‖A+B‖ ≤ ‖A‖+ ‖B‖

• ‖A ·B‖ ≤ ‖A‖ · ‖B‖

Definition 7 A matrix norm and a vector norm are compatible if

‖Ax‖ ≤ ‖A‖‖x‖. (8)

3.1 Vector-based Norms

For a give matrix A ∈ Rm×n, consider the vector vec(A) ∈ Rmn (the columns of A stacked on top of one
another), and apply the standard vector p-norm, then implies

• ‖A‖1 =
∑m

i=1

∑n
j=1 |aij |;

• ‖A‖∞ = maxij |aij |;

• ‖A‖2 =
√∑m

i=1

∑n
j=1 a

2
ij . The vector-based `2 matrix norm is commonly called a Frobenius norm and

denoted as ‖A‖F .

Let us give a sample proof to guarantee that the vector-based norms are the matrix norms.

Proof 2 Let us prove that ‖A‖1 is a matrix norm.

‖AB‖1 =
∑
i,j

|(AB)ij | =
∑
i,j

|
∑
k=1

aikbkj | (9)

≤
∑
i,j

∑
k=1

|aikbkj | ≤
∑
i,j

∑
k=1

|aik||bkj | (10)

= ‖A‖1‖B‖1. (11)

You can use the same trick to justify the compatibility of Frobenius norm.
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Theorem 5 The Frobenious norm of matrix A is

‖A‖2F = tr(A>A), (12)

where tr(A) =
∑

i aii is the trace of any symmetric matrix.

Prove it by your self.

Theorem 6 Suppose that U and V are orthogonal matrices, namely U>U = UU> = I, then

‖UAV ‖F = ‖A‖F . (13)

3.2 Induced Matrix Norms

Definition 8 Given any vector norm, the induced matrix norm is give by

‖A‖p,q = sup
x6=0

‖Ax‖p
‖x‖q

= sup
‖x‖q=1

‖Ax‖p. (14)

We use a simple notation for ‖A‖p,p = ‖A‖p.

You can check that these norms are automatically compatible with the vector norm that produced them.

Example 4 Let us give some examples of the induced matrix norms.

• ‖A‖1 = maxj

∑
i |aij |, it is the largest column sum.

• ‖A‖∞ = maxi

∑
j |aij |, it is the largest row sum.

• ‖A‖2 = maxi σi, where σi is the largest singular value.

Proof 3 Let us give a sample proof.

‖Ax‖1 =
∑
i

|
∑
j

aijxj | ≤
∑
i

∑
j

|aij ||xj | (15)

=
∑
j

(∑
i

|aij |

)
· |xj | ≤

∑
j

(
max

k

∑
i

|aik|

)
· |xj | (16)

=

(
max

k

∑
i

|aik|

)
·
∑
j

|xj | =

(
max

k

∑
i

|aik|

)
· ‖x‖1. (17)

Thus, based on the definition of induced norm we have ‖A‖1 ≤ maxk

∑
i |aik|. Fourther, suppose that k0 =

arg maxk

∑
i |aik|, and take x = ek0

, then ‖A‖1 =
∑

i |aik0
| = maxk

∑
i |aik|.

• Matrix Inner production: A,B ∈ Rm×n, then 〈A,B〉 = tr(AB>) =
∑

i

∑
j aijbji.

• So, ‖A‖2F = 〈A.B〉.

• Cauchy Inequality:

|〈A,B〉| ≤ ‖A‖F ‖B‖F . (18)
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3.3 singular-value-based Matrix Norms

For any matrix A with the singular value decomposition form A = UΣV >, then we can define the following
singular-value-based matrix norms as:

• Spectral Radius: ρ(A) = ‖A‖2 = maxi σi, where σi is the ith singular value of A.

• ‖A‖F =
√∑

i σ
2
i .

• ‖A‖∗ =
∑

i σi, this is called nuclear norm.

• ‖A‖∞ = maxi σi, the same as the spectral radius.

Theorem 7 Suppose that ‖A‖ is a matrix norm, then

ρ(A) ≤ ‖A‖. (19)

3.4 Singular Value Decomposition

Theorem 8 Any matrix A ∈ Rm×n can be factors as

A = UΣV >, (20)

where U>U = V >V = I and Σ is a diagonal matrix with σi on the diagonal.

Figure 3: Geometric Interpretation of SVD

Remark 1 This theorem is not very rigorous. Actually, we need to show U and V implicitly.

• Full SVD: U ∈ Rm2

, V ∈ Rn2

and Σ ∈ Rm×n.

• condensed SVD: U ∈ Rm×r, V > ∈ Rr×n and Σ ∈ Rr×r, where r = rank(A).

• Thin SVD: U ∈ Rm×r, V > ∈ Rn×n and Σ ∈ Rr×n.

• Thin SVD: U ∈ Rm×m, V > ∈ Rr×n and Σ ∈ Rm×r.

• In this note, we use the condensed SVD. Then A>A = V >Σ2V and AA> = U>Σ2U .
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• Then we can compute the U , V and Σ by the eigenvalue decomposition of the symetric matrix A>A
and AA>. This is not Unique!!!

• Singular value decomposition of A is

A =

r∑
i=1

σiuiv
>
i . (21)

• Geometric Interpretation of SVD (see Figure 3).

• Pseudo-inverse: A = UΣV > then A+ = V Σ−1U>.

• Let us consider the LS problem. The solution is x∗ = (A>A)−1A>b = V Σ−1U>b. Then A+ has the
similar behavior of A−1.
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