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1 Vector Space

Definition 1 Suppose a set V satisfies, for any x,y € V implies a -x+b-y € V, where “+” and “” are
the addition and scalar-multiplication which are defined on V. The we call the set V' as a vector space, and
any x € V is a vector of V.

Example 1 The examples of Vector Space:

e R? and R™ are vector spaces.

a1 0 0
e D=J{AcR¥>*3: 4= 0 as2 0
0 0 ass

R2 R and {0} are the sub-spaces of R>.

The Column Space of A = (ay,...,a,),a; € R™, C(A) ={b e R™:b =" za;,z; € R}. Thus,
actually b is the linear combination of the column vectors of A. The matrix form can be written as
C(A)={b eR™:b= Ax}.

The Null Space of A: N(A) = {x € R" : Ax =0}.

o F={f|f(z)=aTx+b,x,acR"} is a vector space??

Definition 2 If Z?:l x;a; = 0 implies that x1 = 22 = --- = x,, = 0, then the vectors a;,t = 1,...,n are
linearly independent.

Note that A = (aj,...,a,) and N(A) = 0 means that vectors a;,i = 1,...,n are linearly independent.

Definition 3 The basis of a vector space V' is a set of vectors vy, ...,vq satisfies:
® vy, ...,vq are linearly independent.
e span{vy,...,vgt ={b:b= 25:1 zivg, v, € R} =V.

Then we say the dimensionality of V is d, denoted as dim(V') = d.

Example 2 The four fundamental sub-spaces of A € R"™*™ are the column space C(A), null space N(A),
the row space R(A) = C(AT) and the left-null space N(AT) = {x : ATx = x" A = 0}. We can see that
C(A) CR™ N(AT) C R™ R(A) C R*, R(A) C R", and dim(C(A)) = rank(A) = r,dim(N(AT) =m —r
and dim(R(A)) = r,dim(N(A)) =n —r (see Figure 1).
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Figure 1: The four fundamental sub-spaces of A

2 Vector Norm

Vector Norm:
Definition 4 The norm of a vector v € R™ is a function || - || : R" — R satisfies:

e ||[v]| >0 and ||v|| = 0 if and only if v = 0.
o ||av|| = |al|jv]| for any o € R.

o [lv+ull <ol + [lu]

Example 3 We demonstrate some norm examples.

1
o ly-norm 1< p < oo: x|, = (X0, s ?) /7.

o loo-norm: ||x||cc = max; |z;|.
e lg-norm: ||x||o is the number of nonzero elements of x.

e Q: is y-norm a vector norm??

Theorem 1

[1%[loo < [lx[lx < 7flx]loo
oo < lIxll2 < vnlx]lo
2 < lIxlls < vVnlx]2

11
1xllp < lIxllq <na=7|x|lp,p = ¢> 1.



Proof 1 Sample Proof: Let v = (vy,...,v,) ", where v; = |x;|/z; if x; # 0. Thus, |v;| = 1 and |z;| = viw;.
Then
Il =D fail =Y viwi = v x < |[vl2lx]l2 = valx], (5)

where the last inequality comes from the Cauchy inequality (6). The geometric interpretation can be found
in Figure 2.
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Figure 2: The balls of unit norm in R?

Definition 5 We define the inner product of v,u € R™ is (v,u) = v u. Then the {y-norm is the norm with
respect to the inter product in R™, that is ||[v||3 = v v = (v,v).

Theorem 2 (Pythagorean Theorem)

lu+ol3 = flull3 + 103,

if v L u, namely (u,v) = 0.

Theorem 3 (Cauchy Inequality)

[(w, 0)] < lull2lv]l2. (6)



Based on the Cauchy inequality, we can define the angle between two vectors is cos(u, v)

can be seen as the similarity of two vectors.

Q: How to project a vector a on b?

Theorem 4 (Holder Inequality)
[(u, 0)| < Jlullpllvllg,

where p,q > 1 and%—k%:l.

3 Matrix Norm

Matrix Norm:

Definition 6 The norm of a matrizx A € R™*™ is a function || - || : R™*"™ — R satisfies:

IA|l > 0 and ||A]| = 0 if and only if A= 0.

laAll = ol All for any a € R.

A+ Bl <Al +[IB]

[A- Bl < [lA]-|[B]

Definition 7 A matriz norm and a vector norm are compatible if

[[Ax|| < [[All[}x]]

3.1 Vector-based Norms

(u,v)

— _\wv)
lull2][v]l2

. This

For a give matrix A € R™*", consider the vector vec(4) € R™" (the columns of A stacked on top of one

another), and apply the standard vector p-norm, then implies

o (1Al =320 205 lagl;

¢ [|Alloo = maxy; [a;;;

o [[All2 = />0, >o5-1 af;- The vector-based £ matrix norm is commonly called a Frobenius norm and

denoted as || Al .

Let us give a sample proof to guarantee that the vector-based norms are the matrix norms.

Proof 2 Let us prove that ||Al|1 is a matriz norm.

IABllL = > [(AB)ijl = > 1> ainbu;]

i,j ij k=1
<D D laiwbigl <D0 lainllb|
i,j k=1 ij k=1
= Al1[IBl1-

You can use the same trick to justify the compatibility of Frobenius norm.



Theorem 5 The Frobenious norm of matriz A is
|Al7 = tr(AT A), (12)

where tr(A) =, a;; is the trace of any symmetric matriz.
Prove it by your self.
Theorem 6 Suppose that U and V are orthogonal matrices, namely U'U = UU " = I, then

IUAV [ = [|A]l - (13)

3.2 Induced Matrix Norms

Definition 8 Given any vector norm, the induced matriz norm is give by

[Ax]|
[A[lp,q = sup F = sup [[Ax],. (14)
x£0 [1%llq Ix|lq=1

We use a simple notation for ||All,, = [|Allp-
You can check that these norms are automatically compatible with the vector norm that produced them.

Example 4 Let us give some examples of the induced matriz norms.

o ||Ally = max; ), |ai;|, it is the largest column sum.
o ||Alloo =max; > |y, it is the largest row sum.

o ||All2 = max; 0;, where o; is the largest singular value.

Proof 3 Let us give a sample proof.

|Ax|l1 = Z | Zaiﬂﬂ < ZZ |aij||z;] (15)
= Z (Z |aij|> ag] < Z <m]§XZ |aik|> |z (16)
= (mnglW) 'Zml = (mgxz az’k|> el (17)

Thus, based on the definition of induced norm we have ||A|l; < maxy >, |a|. Fourther, suppose that ko =
argmaxy » ., |aix|, and take x = ey, then || A1 =, |air,| = maxy >, |aix]-

e Matrix Inner production: A, B € R™*" then (A,B) =tr(ABT) =3, > ijbji.
o S0, A% = (4.B)

e Cauchy Inequality:
(A, B)| < [|Allp[|Bl| - (18)



3.3 singular-value-based Matrix Norms

For any matrix A with the singular value decomposition form A = UXV T, then we can define the following
singular-value-based matrix norms as:

e Spectral Radius: p(A) = ||All2 = max; o;, where o; is the ith singular value of A.

o [Alr =307
o [|All, =), 04, this is called nuclear norm.

o ||A|lco = max; 0;, the same as the spectral radius.

Theorem 7 Suppose that | A| is a matriz norm, then
p(A) < [|A]l. (19)

3.4 Singular Value Decomposition
Theorem 8 Any matriz A € R™*™ can be factors as
A=UxVT, (20)

where UTU = VTV =1 and ¥ is a diagonal matriz with o; on the diagonal.
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Figure 3: Geometric Interpretation of SVD

Remark 1 This theorem is not very rigorous. Actually, we need to show U and V implicitly.

Full SVD: U € R™*,V € R and ¥ € Rm*™,

condensed SVD: U € R™*" VT € R™" and ¥ € R™", where r = rank(A).

Thin SVD: U € R™*", VT € R**™ gnd ¥ € R™>".

Thin SVD: U € R™*m VT € R™" gpd 5 € RMXT,

In this note, we use the condensed SVD. Then ATA=V X2V and AAT =UTX2U.



e Then we can compute the U, V and ¥ by the eigenvalue decomposition of the symetric matriz AT A
and AAT. This is not Unique!!!

e Singular value decomposition of A is

,
A= Z o, . (21)
i=1

o Geometric Interpretation of SVD (see Figure 3).
e Pseudo-inverse: A=UXV " then At =VES-1UT.

e Let us consider the LS problem. The solution is x* = (ATA)"'!ATb = VE~'UTb. Then AT has the
similar behavior of A™1.
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