

Edited by: Xiangyu Chang

1 Vector Space

Definition 1 Suppose a set V satisfies, for any $x, y \in V$ implies $a \cdot x + b \cdot y \in V$, where "+" and "." are the addition and scalar-multiplication which are defined on V . The we call the set V as a vector space, and any $\mathbf{x} \in V$ is a vector of V.

Example 1 The examples of Vector Space:

- \mathbb{R}^2 and \mathbb{R}^n are vector spaces.
- \bullet $D =$ $\sqrt{ }$ J \mathcal{L} $A \in \mathbb{R}^{3 \times 3}$: $A =$ \lceil $\overline{1}$ a_{11} 0 0 0 a_{22} 0 $0 \t 0 \t a_{33}$ 1 $\overline{1}$ \mathcal{L} \mathcal{L} J
- \mathbb{R}^2 , \mathbb{R} and $\{0\}$ are the sub-spaces of \mathbb{R}^3 .
- The Column Space of $A = (\mathbf{a}_1, \ldots, \mathbf{a}_n), \mathbf{a}_i \in \mathbb{R}^m$, $C(A) = \{ \mathbf{b} \in \mathbb{R}^m : \mathbf{b} = \sum_{i=1}^n x_i \mathbf{a}_i, x_i \in \mathbb{R} \}$. Thus, actually $\mathbf b$ is the linear combination of the column vectors of A. The matrix form can be written as $C(A) = \{ \mathbf{b} \in \mathbb{R}^m : \mathbf{b} = A\mathbf{x} \}.$
- The Null Space of A: $N(A) = {\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = 0}.$
- $\mathcal{F} = \{f | f(x) = \mathbf{a}^\top \mathbf{x} + b, \mathbf{x}, \mathbf{a} \in \mathbb{R}^n\}$ is a vector space??

Definition 2 If $\sum_{i=1}^{n} x_i \mathbf{a}_i = 0$ implies that $x_1 = x_2 = \cdots = x_n = 0$, then the vectors $a_i, i = 1, \ldots, n$ are linearly independent.

Note that $A = (\mathbf{a}_1, \dots, \mathbf{a}_n)$ and $N(A) = 0$ means that vectors $a_i, i = 1, \dots, n$ are linearly independent.

Definition 3 The basis of a vector space V is a set of vectors v_1, \ldots, v_d satisfies:

- v_1, \ldots, v_d are linearly independent.
- $span\{v_1, \ldots, v_d\} = \{\mathbf{b} : \mathbf{b} = \sum_{i=1}^d x_i v_d, x_i \in \mathbb{R}\} = V.$

Then we say the dimensionality of V is d, denoted as $dim(V) = d$.

Example 2 The four fundamental sub-spaces of $A \in \mathbb{R}^{m \times n}$ are the column space $C(A)$, null space $N(A)$, the row space $R(A) = C(A^{\top})$ and the left-null space $N(A^{\top}) = {\mathbf{x} : A^{\top} \mathbf{x} = \mathbf{x}^{\top} A = 0}$. We can see that $C(A) \subset \mathbb{R}^m, N(A^{\top}) \subset \mathbb{R}^m, R(A) \subset \mathbb{R}^n, R(A) \subset \mathbb{R}^n$, and $dim(C(A)) = rank(A) = r, dim(N(A^{\top}) = m - r)$ and $dim(R(A)) = r, dim(N(A)) = n - r$ (see Figure [1\)](#page-1-0).

Figure 1: The four fundamental sub-spaces of A .

2 Vector Norm

Vector Norm:

Definition 4 The norm of a vector $v \in \mathbb{R}^n$ is a function $\| \cdot \| : \mathbb{R}^n \to \mathbb{R}$ satisfies:

- $||v|| \ge 0$ and $||v|| = 0$ if and only if $v = 0$.
- $\|\alpha v\| = |\alpha| \|v\|$ for any $\alpha \in \mathbb{R}$.
- $||v + u|| \le ||v|| + ||u||$

Example 3 We demonstrate some norm examples.

- $\ell_p\text{-norm } 1 \leq p < \infty$: $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$.
- ℓ_{∞} -norm: $\|\mathbf{x}\|_{\infty} = \max_i |x_i|.$
- ℓ_0 -norm: $\|\mathbf{x}\|_0$ is the number of nonzero elements of **x**.
- Q: is ℓ_0 -norm a vector norm??

Theorem 1

- $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_1 \le n\|\mathbf{x}\|_{\infty}$ (1)
- $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$ (2)
- $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n}\|\mathbf{x}\|_2$ (3)
- $\|\mathbf{x}\|_p \le \|\mathbf{x}\|_q \le n^{\frac{1}{q} \frac{1}{p}} \|\mathbf{x}\|_p, p \ge q > 1.$ (4)

Proof 1 Sample Proof: Let $\mathbf{v} = (v_1, \dots, v_n)^\top$, where $v_i = |x_i|/x_i$ if $x_i \neq 0$. Thus, $|v_i| = 1$ and $|x_i| = v_i x_i$. Then

$$
\|\mathbf{x}\|_1 = \sum_i |x_i| = \sum v_i x_i = \mathbf{v}^\top \mathbf{x} \le \|\mathbf{v}\|_2 \|\mathbf{x}\|_2 = \sqrt{n} \|\mathbf{x}\|_1,\tag{5}
$$

where the last inequality comes from the Cauchy inequality (6) . The geometric interpretation can be found in Figure [2.](#page-2-1)

Figure 2: The balls of unit norm in \mathbb{R}^2 .

Definition 5 We define the inner product of $v, u \in \mathbb{R}^n$ is $\langle v, u \rangle = v^\top u$. Then the ℓ_2 -norm is the norm with respect to the inter product in \mathbb{R}^n , that is $||v||_2^2 = v^\top v = \langle v, v \rangle$.

Theorem 2 (Pythagorean Theorem)

$$
||u + v||_2^2 = ||u||_2^2 + ||v||_2^2,
$$

if $v \perp u$, namely $\langle u, v \rangle = 0$.

Theorem 3 (Cauchy Inequality)

$$
|\langle u, v \rangle| \le ||u||_2 ||v||_2. \tag{6}
$$

Based on the Cauchy inequality, we can define the angle between two vectors is $cos(u, v) = \frac{\langle u, v \rangle}{||u|| ||v|| ||_2}$. This can be seen as the similarity of two vectors.

Q: How to project a vector a on b?

Theorem 4 (Hölder Inequality)

$$
|\langle u, v \rangle| \le ||u||_p ||v||_q,\tag{7}
$$

where $p, q \geq 1$ and $\frac{1}{p} + \frac{1}{q} = 1$.

3 Matrix Norm

Matrix Norm:

Definition 6 The norm of a matrix $A \in \mathbb{R}^{m \times n}$ is a function $\| \cdot \| : \mathbb{R}^{m \times n} \to \mathbb{R}$ satisfies:

- $||A|| > 0$ and $||A|| = 0$ if and only if $A = 0$.
- $\|\alpha A\| = |\alpha| \|A\|$ for any $\alpha \in \mathbb{R}$.
- $||A + B|| \le ||A|| + ||B||$
- $||A \cdot B|| \le ||A|| \cdot ||B||$

Definition 7 A matrix norm and a vector norm are compatible if

$$
||A\mathbf{x}|| \le ||A|| ||\mathbf{x}||. \tag{8}
$$

3.1 Vector-based Norms

For a give matrix $A \in \mathbb{R}^{m \times n}$, consider the vector $vec(A) \in \mathbb{R}^{mn}$ (the columns of A stacked on top of one another), and apply the standard vector p -norm, then implies

- $||A||_1 = \sum_{i=1}^m \sum_{j=1}^n |a_{ij}|;$
- $||A||_{\infty} = \max_{i,j} |a_{ij}|;$
- $||A||_2 = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$. The vector-based ℓ_2 matrix norm is commonly called a Frobenius norm and denoted as $||A||_F$

Let us give a sample proof to guarantee that the vector-based norms are the matrix norms.

Proof 2 Let us prove that $||A||_1$ is a matrix norm.

$$
||AB||_1 = \sum_{i,j} |(AB)_{ij}| = \sum_{i,j} |\sum_{k=1} a_{ik} b_{kj}|
$$
\n(9)

$$
\leq \sum_{i,j} \sum_{k=1} |a_{ik} b_{kj}| \leq \sum_{i,j} \sum_{k=1} |a_{ik}| |b_{kj}| \tag{10}
$$

$$
= \|A\|_1 \|B\|_1. \tag{11}
$$

You can use the same trick to justify the compatibility of Frobenius norm.

Theorem 5 The Frobenious norm of matrix A is

$$
||A||_F^2 = tr(A^\top A),
$$
\n(12)

where $tr(A) = \sum_i a_{ii}$ is the trace of any symmetric matrix.

Prove it by your self.

Theorem 6 Suppose that U and V are orthogonal matrices, namely $U^{\top}U = UU^{\top} = I$, then

$$
||UAV||_F = ||A||_F. \t\t(13)
$$

3.2 Induced Matrix Norms

Definition 8 Given any vector norm, the induced matrix norm is give by

$$
||A||_{p,q} = \sup_{\mathbf{x}\neq 0} \frac{||A\mathbf{x}||_p}{\|\mathbf{x}\|_q} = \sup_{||\mathbf{x}||_q = 1} ||A\mathbf{x}||_p.
$$
 (14)

We use a simple notation for $||A||_{p,p} = ||A||_p$.

You can check that these norms are automatically compatible with the vector norm that produced them.

Example 4 Let us give some examples of the induced matrix norms.

- $||A||_1 = \max_j \sum_i |a_{ij}|$, it is the largest column sum.
- $||A||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$, it is the largest row sum.
- $||A||_2 = \max_i \sigma_i$, where σ_i is the largest singular value.

Proof 3 Let us give a sample proof.

$$
||A\mathbf{x}||_1 = \sum_{i} |\sum_{j} a_{ij} x_j| \le \sum_{i} \sum_{j} |a_{ij}| |x_j| \tag{15}
$$

$$
= \sum_{j} \left(\sum_{i} |a_{ij}| \right) \cdot |x_j| \le \sum_{j} \left(\max_{k} \sum_{i} |a_{ik}| \right) \cdot |x_j| \tag{16}
$$

$$
= \left(\max_{k} \sum_{i} |a_{ik}|\right) \cdot \sum_{j} |x_j| = \left(\max_{k} \sum_{i} |a_{ik}|\right) \cdot ||\mathbf{x}||_1. \tag{17}
$$

Thus, based on the definition of induced norm we have $||A||_1 \leq \max_k \sum_i |a_{ik}|$. Fourther, suppose that $k_0 =$ $\arg \max_k \sum_i |a_{ik}|$, and take $\mathbf{x} = e_{k_0}$, then $||A||_1 = \sum_i |a_{ik_0}| = \max_k \sum_i |a_{ik}|$.

- Matrix Inner production: $A, B \in \mathbb{R}^{m \times n}$, then $\langle A, B \rangle = tr(AB^{\top}) = \sum_i \sum_j a_{ij} b_{ji}$.
- So, $||A||_F^2 = \langle A.B \rangle$.
- Cauchy Inequality:

$$
|\langle A, B \rangle| \le ||A||_F ||B||_F. \tag{18}
$$

3.3 singular-value-based Matrix Norms

For any matrix A with the singular value decomposition form $A = U\Sigma V^{\top}$, then we can define the following singular-value-based matrix norms as:

- Spectral Radius: $\rho(A) = ||A||_2 = \max_i \sigma_i$, where σ_i is the *i*th singular value of A.
- $||A||_F = \sqrt{\sum_i \sigma_i^2}$.
- $||A||_* = \sum_i \sigma_i$, this is called *nuclear norm*.
- $||A||_{\infty} = \max_i \sigma_i$, the same as the spectral radius.

Theorem 7 Suppose that $||A||$ is a matrix norm, then

$$
\rho(A) \le ||A||. \tag{19}
$$

3.4 Singular Value Decomposition

Theorem 8 Any matrix $A \in \mathbb{R}^{m \times n}$ can be factors as

$$
A = U\Sigma V^{\top},\tag{20}
$$

where $U^{\top}U = V^{\top}V = I$ and Σ is a diagonal matrix with σ_i on the diagonal.

Figure 3: Geometric Interpretation of SVD

Remark 1 This theorem is not very rigorous. Actually, we need to show U and V implicitly.

- Full SVD: $U \in \mathbb{R}^{m^2}$, $V \in \mathbb{R}^{n^2}$ and $\Sigma \in \mathbb{R}^{m \times n}$.
- condensed SVD: $U \in \mathbb{R}^{m \times r}$, $V^{\top} \in \mathbb{R}^{r \times n}$ and $\Sigma \in \mathbb{R}^{r \times r}$, where $r = rank(A)$.
- Thin SVD: $U \in \mathbb{R}^{m \times r}$, $V^{\top} \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{r \times n}$.
- Thin SVD: $U \in \mathbb{R}^{m \times m}, V^{\top} \in \mathbb{R}^{r \times n}$ and $\Sigma \in \mathbb{R}^{m \times r}$.
- In this note, we use the condensed SVD. Then $A^{\top}A = V^{\top} \Sigma^2 V$ and $AA^{\top} = U^{\top} \Sigma^2 U$.
- Then we can compute the U, V and Σ by the eigenvalue decomposition of the symetric matrix $A^{\top}A$ and AA^{\top} . This is not Unique!!!
- Singular value decomposition of A is

$$
A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}.
$$
\n(21)

- Geometric Interpretation of SVD (see Figure [3\)](#page-5-0).
- Pseudo-inverse: $A = U\Sigma V^{\top}$ then $A^+ = V\Sigma^{-1}U^{\top}$.
- Let us consider the LS problem. The solution is $\mathbf{x}^* = (A^\top A)^{-1}A^\top \mathbf{b} = V\Sigma^{-1}U^\top \mathbf{b}$. Then A^+ has the similar behavior of A^{-1} .

References